
Week 3 - Wednesday



 What did we talk about last time?
 Finished proofs by induction
 Graph definitions
 Graph applications







 By their nature, manticores lie every Monday, Tuesday, and 
Wednesday and speak the truth on other days

 However, unicorns lie on Thursdays, Fridays, and Saturdays 
and speak the truth the rest of the week

 A manticore and a unicorn meet and have the following 
conversation:
Manticore: Yesterday I was lying.
Unicorn: So was I.

 On which day did they meet? 



 A path from u to v is sequence of vertices where each vertex 
in the sequence is connected by an edge to the next

 A simple path from u to v is a path that does not contain a 
repeated vertex

 A cycle is a path that starts and ends at the same vertex but 
repeats no other vertices



 Vertices u and v of G are connected iff there is a path from u
to v

 An undirected graph G is connected iff all pairs of vertices u
and v are connected

 A directed graph G is is strongly connected iff all pairs of 
vertices u and v are connected, in both directions

 The (unweighted) distance between vertices u and v is the 
minimum number of edges in a u-v path



 A tree is a graph that is circuit-free and connected
 Examples:

A graph made up of disconnected 
trees is called a forest



 In a rooted tree, one vertex is distinguished and called the root
 The level of a vertex is the number of edges along the unique path 

between it and the root
 The children of any vertex v in a rooted tree are all those nodes 

that are adjacent to v and one level further away from the root 
than v

 If w is a child of v, then v is the parent of w
 If v is on the unique path from w to the root, then v is an ancestor 

of w and w is a descendant of v
 Rooted trees allow us to represent a hierarchy



 Proof: Pick a node r to use as a root of the tree.  Every node u
(except for r) only has one parent.  Thus, every edge goes 
upward from exactly one non-root node.  Since there are n – 1 
non-root nodes, there are n – 1 edges in a tree.







 Imagine that we have two particular nodes, s and t, in our 
graph and we want to see if there is any path from s to t

 This problem is like a maze solving problem
 What's an efficient way to do this, knowing nothing about the 

relative connections between s and t?



 Although we started with depth first search (DFS) in Data 
Structures, a breadth first search (BFS) is perhaps a more 
natural way to search

 Explore out from node s in layers, where each layer is one 
more step away from s (provided that it hasn't already been 
visited)
 Think of it as a flood from s

 When we can't reach any more nodes, either t will have been 
in one of the layers (reachable) or not (unreachable)



 Given the following graph, describe each layer, when s = node 1
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 Both a BFS and a DFS will produce a tree based on the order in 
which nodes are visited

 When examining a node u, a new node v might be found
 When that happens, draw an edge from u to v in the breadth first 

search tree
 Draw the breadth first search tree for the example graph



 The set of nodes discovered by a BFS are exactly those 
reachable from node s

 We call this set of nodes a connected component
 A graph could have only a single connected component or 

many



 In contrast, a depth first search goes as far from the starting 
node s as possible until it hits a dead end

 Only then will it backtrack
 Both BFS and DFS are special cases of the generic algorithm 

that will keep adding nodes to a connected component (R) 
until it can't find new ones



 DFS(u):
 Mark u as "Explored" and add u to set R
 For each edge (u, v)
▪ If v is not marked "Explored" then
▪Recursively invoke DFS(v)



 Although a BFS and a DFS will both visit all of the nodes in a 
connected component, the orders are usually different
 BFS trees tend to be bushy and not very deep
 DFS trees tend to be narrow and deep

 A depth first search tree can be built by putting an edge 
between u and v if DFS(v) is invoked while visiting u

 Draw the depth first search tree for the example graph



 Claim: For all nodes s and t in a graph, their connected 
components are either the same or disjoint

 Proof: Consider nodes s and t where there is a path between 
them. For any node v to be in the component of s, there must be a 
path from s to v.   For any node v to be in the  component of t, 
there must be a path from t to v.  Since these paths exist and one 
could always take a path from s to t before visiting v or vice versa, 
all such nodes must be in a single connected component.  Now 
consider s and t with no path between them. There cannot be a 
node v that is in the connected component of both, since it would 
create a path from s to t.





 We think of a graph G = (V, E)
 We will often let variables n = |V| and m = |E|
 Is O(m2) or O(n3) a better running time?
 Depends!

 For graphs, we will consider O(m + n) to be linear, since that's 
how much input we need to describe the graph



 A simple way of keeping track of the edges in a graph is an 
adjacency matrix

 An adjacency matrix is an n x n matrix where n is the number of 
nodes

 The number in row i column j is the number of edges between 
node i and node j

 Undirected graphs have symmetrical adjacency matrices
 Two weaknesses:
 Θ(n2) space, even for sparse graphs
 Θ(n) time to check all of the edges for a node



 An adjacency matrix wastes a lot of space if the graph is not 
very dense

 An alternative is an adjacency list
 The form of an adjacency list is an array of length n where the 

ith element is a pointer to a linked list (or dynamically allocated 
array) of the nodes adjacent to node i

 The book assumes this implementation



 A queue is a set where we extract elements in first-in, first-
out (FIFO) order

 A stack is a set where we extract elements in last-in, first-out
(LIFO) order

 Both data structures can be efficiently implemented by a 
doubly-linked list





 Finish graph representations
 Testing for bipartiteness
 Directed connectivity
 Topological sort



 Work on Assignment 2
 Due next Friday before midnight

 Read sections 3.4, 3.5, and 3.6
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