
Week 3 - Wednesday

 What did we talk about last time?
 Finished proofs by induction
 Graph definitions
 Graph applications

 By their nature, manticores lie every Monday, Tuesday, and
Wednesday and speak the truth on other days

 However, unicorns lie on Thursdays, Fridays, and Saturdays
and speak the truth the rest of the week

 A manticore and a unicorn meet and have the following
conversation:
Manticore: Yesterday I was lying.
Unicorn: So was I.

 On which day did they meet?

 A path from u to v is sequence of vertices where each vertex
in the sequence is connected by an edge to the next

 A simple path from u to v is a path that does not contain a
repeated vertex

 A cycle is a path that starts and ends at the same vertex but
repeats no other vertices

 Vertices u and v of G are connected iff there is a path from u
to v

 An undirected graph G is connected iff all pairs of vertices u
and v are connected

 A directed graph G is is strongly connected iff all pairs of
vertices u and v are connected, in both directions

 The (unweighted) distance between vertices u and v is the
minimum number of edges in a u-v path

 A tree is a graph that is circuit-free and connected
 Examples:

A graph made up of disconnected
trees is called a forest

 In a rooted tree, one vertex is distinguished and called the root
 The level of a vertex is the number of edges along the unique path

between it and the root
 The children of any vertex v in a rooted tree are all those nodes

that are adjacent to v and one level further away from the root
than v

 If w is a child of v, then v is the parent of w
 If v is on the unique path from w to the root, then v is an ancestor

of w and w is a descendant of v
 Rooted trees allow us to represent a hierarchy

 Proof: Pick a node r to use as a root of the tree. Every node u
(except for r) only has one parent. Thus, every edge goes
upward from exactly one non-root node. Since there are n – 1
non-root nodes, there are n – 1 edges in a tree.

 Imagine that we have two particular nodes, s and t, in our
graph and we want to see if there is any path from s to t

 This problem is like a maze solving problem
 What's an efficient way to do this, knowing nothing about the

relative connections between s and t?

 Although we started with depth first search (DFS) in Data
Structures, a breadth first search (BFS) is perhaps a more
natural way to search

 Explore out from node s in layers, where each layer is one
more step away from s (provided that it hasn't already been
visited)
 Think of it as a flood from s

 When we can't reach any more nodes, either t will have been
in one of the layers (reachable) or not (unreachable)

 Given the following graph, describe each layer, when s = node 1

1

2 3

4 5

6

8

7

10

9

12

11

13

 Both a BFS and a DFS will produce a tree based on the order in
which nodes are visited

 When examining a node u, a new node v might be found
 When that happens, draw an edge from u to v in the breadth first

search tree
 Draw the breadth first search tree for the example graph

 The set of nodes discovered by a BFS are exactly those
reachable from node s

 We call this set of nodes a connected component
 A graph could have only a single connected component or

many

 In contrast, a depth first search goes as far from the starting
node s as possible until it hits a dead end

 Only then will it backtrack
 Both BFS and DFS are special cases of the generic algorithm

that will keep adding nodes to a connected component (R)
until it can't find new ones

 DFS(u):
 Mark u as "Explored" and add u to set R
 For each edge (u, v)
▪ If v is not marked "Explored" then
▪Recursively invoke DFS(v)

 Although a BFS and a DFS will both visit all of the nodes in a
connected component, the orders are usually different
 BFS trees tend to be bushy and not very deep
 DFS trees tend to be narrow and deep

 A depth first search tree can be built by putting an edge
between u and v if DFS(v) is invoked while visiting u

 Draw the depth first search tree for the example graph

 Claim: For all nodes s and t in a graph, their connected
components are either the same or disjoint

 Proof: Consider nodes s and t where there is a path between
them. For any node v to be in the component of s, there must be a
path from s to v. For any node v to be in the component of t,
there must be a path from t to v. Since these paths exist and one
could always take a path from s to t before visiting v or vice versa,
all such nodes must be in a single connected component. Now
consider s and t with no path between them. There cannot be a
node v that is in the connected component of both, since it would
create a path from s to t.

 We think of a graph G = (V, E)
 We will often let variables n = |V| and m = |E|
 Is O(m2) or O(n3) a better running time?
 Depends!

 For graphs, we will consider O(m + n) to be linear, since that's
how much input we need to describe the graph

 A simple way of keeping track of the edges in a graph is an
adjacency matrix

 An adjacency matrix is an n x n matrix where n is the number of
nodes

 The number in row i column j is the number of edges between
node i and node j

 Undirected graphs have symmetrical adjacency matrices
 Two weaknesses:
 Θ(n2) space, even for sparse graphs
 Θ(n) time to check all of the edges for a node

 An adjacency matrix wastes a lot of space if the graph is not
very dense

 An alternative is an adjacency list
 The form of an adjacency list is an array of length n where the

ith element is a pointer to a linked list (or dynamically allocated
array) of the nodes adjacent to node i

 The book assumes this implementation

 A queue is a set where we extract elements in first-in, first-
out (FIFO) order

 A stack is a set where we extract elements in last-in, first-out
(LIFO) order

 Both data structures can be efficiently implemented by a
doubly-linked list

 Finish graph representations
 Testing for bipartiteness
 Directed connectivity
 Topological sort

 Work on Assignment 2
 Due next Friday before midnight

 Read sections 3.4, 3.5, and 3.6

	COMP 4500
	Last time
	Questions?
	Assignment 2
	Logical warmup
	Path definitions
	Connectedness
	Trees
	Rooted trees
	Trees have n – 1 edges
	Three-Sentence Summary of Graph Connectivity and Traversal and Implementations with Queues and Stacks
	Graph Connectivity and Traversal
	s-t connectivity
	Breadth first search
	Example graph
	BFS trees
	Connected components
	Depth first search
	Depth first search algorithm
	DFS trees
	Connected components
	Representing Graphs
	Representing graphs
	Adjacency matrix
	Adjacency lists
	Queues and stacks
	Upcoming
	Next time…
	Reminders

